DOI: 10.7672/sgjs2024220024

基于再生材料利用的低碳超高性能混凝土 力学性能和碳减排研究*

潘钻峰1,樊 烽1,王云飞2,潘红才3

(1. 同济大学土木工程学院,上海 200092; 2. 浙江理工大学科技与艺术学院,浙江 绍兴 312369;
 3. 浙江振丰建设有限公司,浙江 杭州 311121)

[摘要]基于废弃混凝土的资源化回收技术,制备再生骨料和再生细粉,并利用其取代石英砂和水泥,制备低碳超高性能混凝土(UHPC)。通过力学试验和碳减排研究,结果表明:再生骨料(掺量30%内)替代石英砂,UHPC 抗压强度降低有限;再生细粉(掺量25%内)替代水泥,UHPC 抗压强度降低有限,掺量超过25%会降低UHPC 基体的工作性能和抗压强度;混合使用再生骨料和再生细粉(各掺5%内),UHPC 抗压强度基本保持不变。在保持UHPC 力学性能基本不变的情况下,再生细粉(掺量25%内)替代水泥或再生骨料(掺量30%内)替代石英砂,在生产阶段,每单位可降低UHPC 成本5%以上,考虑再生材料政府补助和碳减排指标经济,成本最多可降低10%;再生细粉(掺量25%内)替代水泥,在生产阶段,每单位可降低碳排放15%。因此利用再生材料制造低碳UHPC,可有效降低UHPC 生产成本、减少碳排放。

[关键词] 再生材料;超高性能混凝土(UHPC);碳减排;试验;资源化 [中图分类号] TU528 [文献标识码] A [文章编号] 2097-0897(2024)22-0024-05

Research on Mechanical Properties and Carbon Reduction of Low Carbon UHPC Based on Utilization of Recycled Materials

PAN Zuanfeng¹, FAN Feng¹, WANG Yunfei², PAN Hongcai³

(1. School of Civil Engineering, Tongji University, Shanghai 200092, China;

2. Keyi College of Zhejiang SCI-TECH University, Shaoxing, Zhejiang 312369, China;

3. Zhejiang Zhenfeng Construction Co., Ltd., Hangzhou, Zhejiang 311121, China)

Abstract: Based on the resource recovery technology of waste concrete, recycled aggregates and recycled fine powder are produced, and they are used to replace quartz sand and cement to manufacture low-carbon ultra high performance concrete (UHPC). Through mechanical experiments and carbon reduction research, the results indicate that the replacement of quartz sand with recycled aggregate (< 30%) results in a limited reduction in UHPC compressive strength. Regenerated fine powder (<25%) replaces cement, and the reduction in UHPC compressive strength is limited. If the content exceeds 25%, it will reduce the working performance and compressive strength of the UHPC matrix. By mixing recycled aggregate and recycled fine powder (<5%), the compressive strength of UHPC remains unchanged. While maintaining the basic mechanical properties of UHPC, recycled fine powder (<25%) can replace cement or recycled aggregate (< 30%) instead of quartz sand. In the production stage, the cost of UHPC can be reduced by more than 5% per unit. Considering government subsidies for recycled materials and economic carbon reduction indicators, the cost can be reduced by up to 10%. Regenerated fine powder (<25%) can replace cement and reduce carbon emissions by 15% per unit during the production stage. Therefore, using recycled materials to produce low-carbon UHPC can effectively reduce the production

[作者简介] 潘钻峰,博士,教授,E-mail:zfpan@tongji.edu.cn

[收稿日期] 2024-04-25

^{*}同济大学土木工程学院横向课题:预制高性能 UHPC 构件节材减碳关键技术设计与应用研究(2202030028)

[[]通信作者] 樊 烽,博士研究生,高级工程师,E-mail:clintonfan@qq.com

cost and carbon emissions, facilitate the promotion of UHPC, and assist in ecological construction. Keywords:recycled materials;ultra high performance concrete (UHPC);carbon reduction;test;resoure

0 引言

进入 21 世纪,我国城市建设快速发展,截至 2022年底我国城镇化率达到65.22%,已基本接近 发达国家 70%的标准[1]。这意味着城市建设由增 量时代进入存量时代,每年会有大量使用寿命到期 的建筑需要拆迁更新,由此产生大量的建筑废弃 物。根据统计数据测算,新建 1m² 建筑产生 0.05t 建筑垃圾,拆除 1m² 建筑产生 0.7~1.3t 建筑垃圾, 2020年后我国每年产生建筑废弃混凝土 25 亿 t,造 成巨大的环境负担^[2]。而对于城市更新,我国每年 需生产 20 亿 m³ 以上混凝土、170 亿 t 以上砂石、 20亿t以上水泥,由此产生巨量碳排放,据统计, 2019年我国建筑全过程碳排放总量约50亿t,而材 料生产阶段碳排放占建筑总碳排放的 55.4%^[3]。 为实现中国"碳达峰、碳中和"双碳目标,对建筑废 弃物资源化循环利用、实现材料碳减排是减少建筑 碳排放、建设生态中国的重要途径。

国内外学者^[23]对建筑废弃物再生利用做了大 量研究,其中水泥基材料固化废弃物具有处理费用 低、处理工艺简单、对废弃物的固定效果好等特点, 得到了广泛应用。废弃混凝土再生微粉(简称"再 生微粉")作为废弃混凝土的资源化产品,具有极低 的碳足迹(32kg/t),且可就地取材,能替代熟料骨 料,降低水泥制品的成本。再生微粉制备工艺如图 1所示。再生微粉主要由水泥砂浆和粗、细骨料的 碎屑组成,其中 SiO₂和 CaO 的含量较高。经过机械 粉磨、热处理等方式活化后,其活性能得到提高。

图 1 再生育科和再生限初制菌工乙 Fig. 1 Process of recycled aggregate and recycled micro powder

超高性能混凝土 UHPC(ultra-high performance concrete)是一种新型建筑水泥基材料,其主要成分为水泥、硅灰、石英砂、石英粉、钢纤维及高效减水剂等材料,具有超高强度(可达 120MPa 以上)、轻质、高耐久性及微裂缝自愈合能力强等优良特性。但其高成本限制了 UHPC 的应用,且相关研究发现

部分水泥、石英砂仅起物理填充作用,可采用再生 材料替代部分水泥、石英砂制备出性能优异的低碳 UHPC。这为建筑再生材料在 UHPC 中的应用提供 了理论依据。

因此,研究建筑再生材料在 UHPC 中的应用可 实现建筑废弃物的资源化利用,并有效固碳减碳, 具有极强的创新价值和经济应用前景。

1 试验概述

UHPC设计配合比中水泥、石英砂质量占比高, 成本占比大,本文拟以再生微粉替代UHPC中部分 水泥和石英砂进行研究,通过对比试验论证再生材 料在UHPC中使用后,在保证UHPC材料力学性能 的同时,降低生产成本,减少碳排放。

1.1 试验原材料

试验原材料包括:P·O 52.5 水泥,粉煤灰,硅 灰,0.5~3.0mm 洁净河砂,聚羧酸减水剂(固含量 为40%,减水率大于30%),再生骨料(处理后废弃 混凝土骨料,粒径为2.4~3.0mm),再生细粉(处理 后的废弃水泥制品废弃物,粒径为0.1~0.3mm),钢 纤维(长12mm,直径0.15mm)。

1.2 UHPC 试验配合比设计

UHPC 配合比设计理论主要基于颗粒的紧密堆 积模型。改进的 MMA 模型^[4]通过优化混合物中所 有材料的粒径分布,实现体系的最大密实度,采用 下式进行迭代计算:

$$P(D) = \frac{D^{q} - D^{q}_{\min}}{D^{q}_{\max} - D^{q}_{\min}}$$
(1)

式中:*P*(*D*)是总固体中小于粒径的分数;*D*是粒径 (µm);*D*_{max}是体系中的最大粒径;*D*_{min}是最小粒径; *q*是分布模量。

MMA 模型是设计 UHPC 配合比的关键。在建 立骨料合成级配计算模型的基础上,采用优化求解 方法对模型进行求解。本文对比组 COSO 的配合比 设计通过 Excel 数据非线性规划求解最优解的功能 来实现,方法概述为:先选定各骨料配合百分比,代 表实际问题中有待解决的未知因素,为规划求解的 方案;再确定目标函数,即规划求解要达到的最终 目标,MMA 为差平方和(SSR)最小。本项目 UHPC 设计配合比如表1所示。

1.3 试验方法

1) 坍落扩展度

根据 GB/T 2419—2005《水泥胶砂流动度测定

第	53	卷
		_

					Table 1	UHPC design	n mix ratio				kg \cdot m ⁻³
原材料	组成	水泥	石英砂	硅灰	粉煤灰	再生骨料	再生细粉	减水剂	钢纤维	水	水胶比
COS	0	948.0	1 008	168	120	0	0	33.6	168	211	0. 181
CS-1	25	912.0	1 032	168	120	0	0	33.6	168	211	0.186
	C05S0	900.6	1 008	168	120	0	47.4	33.6	168	211	0. 181
原材料组 COSO CS-125 水泥替 代组 石英砂替 代组 石英砂替 代组 石英砂替 パ 石英砂替 パ 低 水泥和砂 混合替代组	C10S0	853.2	1 008	168	120	0	94.8	33.6	168	211	0.181
	C15S0	805.8	1 008	168	120	0	142.2	33.6	168	211	0.181
小 兆 谷 仕 知	C20S0	758.4	1 008	168	120	0	189.6	33.6	168	211	0.181
化组	C25S0	711.0	1 008	168	120	0	237.0	33.6	168	211	0.181
	C30S0	663.6	1 008	168	120	0	284.4	33.6	168	211	0.181
	C40S0	568.8	1 008	168	120	0	379.2	33.6	168	211	0.181
	C0S05	948.0	957.6	168	120	50.4	0	33.6	168	211	0. 181
原材料组 C0S0 CS-12: 水泥替 代组 石英砂替 代组 水泥和砂 混合替代组	C0S10	948.0	907.2	168	120	100.8	0	33.6	168	211	0.181
	C0S15	948.0	856.8	168	120	151.2	0	33.6	168	211	0.181
石央町省 住44	C0S20	948.0	806.4	168	120	201.6	0	33.6	168	211	0.181
化组	C0S25	948.0	756.0	168	120	252.0	0	33.6	168	211	0.181
	C0S30	948.0	705.6	168	120	302.4	0	33.6	168	211	0.181
	C0S40	948.0	604.8	168	120	403.2	0	33.6	168	211	0.181
	C05S05	900.6	957.6	168	120	50.4	47.4	33.6	168	211	0. 181
水泥替 代组 石英砂替 代组 水泥和砂 混合替代组	C10S10	853.2	907.2	168	120	100.8	94.8	33.6	168	211	0.181
	C15S15	805.8	856.8	168	120	151.2	142.2	33.6	168	211	0.181
	C20S20	758.4	806.4	168	120	201.6	189.6	33.6	168	211	0.181
	C25825	711 0	756 0	169	120	252 0	227 0	22.6	169	211	0 191

注:C(X)代表水泥替代率,S(X)代表石英砂替代率,如 C05S0 即为水泥替代 5%,石英砂替代 0 的试验组;CS-125 为未用再生骨料和再生细粉、设计抗压强度为 125MPa 的配合比

方法》对 UHPC 的坍落扩展度进行测定。

2) 抗压、抗折强度

根据 GB/T 31387—2015《活性粉末混凝土》、 GB/T 17671—2021《水泥胶砂强度检验方法(ISO 法)》测定 UHPC 试件的抗压、抗折强度。抗压强度 测试试件尺寸为 100mm×100mm×100mm,抗折强度 测试试件尺寸为 40mm×40mm×160mm。UHPC 试 块制备工艺为:先按表 1 配合比称取各细骨料,在搅 拌机中搅拌 3min 后加入减水剂和水,搅拌 2min 后 均匀加入钢纤维,再搅拌 2min 后制作试块,试块抹 平后在振动台振动密实 1min,然后放入蒸汽养护室 (90±2)℃养护 7d(按相关文献研究^[5]7d 蒸汽养护 强度可达 28d 标准养护强度)。

2 试验数据及力学分析

2.1 抗压强度、抗折强度

UHPC 水泥替代组、石英砂替代组、复合替代组的抗折、抗压强度对比如图 2 所示。其中对比试验组 COSO 试验抗压强度为 151.6MPa,抗折强度 26.93MPa;CS-125 试验抗压强度为 124.9MPa,抗折强度 24.6MPa,均达到理论设计强度。

UHPC 水泥替代组抗压强度随再生细粉取代率的增加呈下降趋势, 替代率为 5%, 10%, 25%, 30% 以上时, 7d 蒸养抗压强度由 151.6MPa 分别降至 148.93, 121.63, 125.67, 115.1MPa, 下降幅度分别 为 1.76%, 19.77%, 17.11%, 24.08%。抗压强度在

低替代率(5%以内)时,基本保持不变;在适度替代率(5%~25%),平均下降18%,呈稳定趋势;高替代率时(30%及以上),强度明显下降。这是因为UHPC基体中再生细粉没有活性,所以替代后强度自然降低,但部分水泥起密实填充作用,同时再生细粉的吸水特性降低了体系的实际水胶比,补偿了一部分强度损失。抗折强度则在替代率达到30%以内保持稳定,替代率在30%以上后开始明显下降,下降幅度为25%。这是因为UHPC基体中抗弯性能由钢纤维和水泥基体材料共同提供,适度替代率内,钢纤维抗弯性能得到充分发挥,所以强度未降低,高替代率时水泥基体性能明显降低,故抗弯性能急剧下降。

UHPC 石英砂替代组抗压强度随再生骨料替代率的增加呈波浪式起伏, 替代率为 5%, 10%, 25%, 30%以上时, 7d 蒸养抗压强度由 151.6MPa 分别降至 126.57, 122.2, 124.03, 134.43MPa, 下降幅度为 16.51%, 19.39%, 18.18%, 11.32%。抗压强度在适度替代率(25%以内), 平均下降 16.6%, 呈稳定趋势; 高替代率时(30%以上), 强度下降反而减少, 下降 11.3%。这是因为 UHPC 基体中骨料按紧密堆积理论设计, 再生骨料颗粒级配和原设计骨料存在最优配合比, 而本组试验中替代率为 30%, 40%时, 试块密度在替代组中相应达到较大密度, 因此其与原级配骨料合成较优, RSS 相对较小, 因此强度降低

图 2 试件抗折、抗压强度对比 Fig. 2 Comparison of flexural and compressive strength of specimens

较少。抗折强度则在替代率达到 40% 以内保持稳定,平均下降幅度为 12%。这是因为 UHPC 基体中抗弯性能由钢纤维和水泥基体材料提供为主,骨料 对抗弯性能影响相对较小,降低主要原因是再生骨 料强度比石英砂强度偏低,且骨料由再生细粉与水 泥浆液包裹,黏结性能较差。

UHPC 复合(再生骨料、再生细粉同比例替代水 泥、石英砂)替代组抗压强度随再生料复合取代率 的增加呈线性下降,替代率为 5%,10%,25%时,7d 蒸养抗压强度由 151.6MPa 分别降至 135.13, 122.23,107.07MPa,下降幅度为 10.86%,19.37%, 29.38%。这是因为 UHPC 基体中骨料按紧密堆积 理论设计,再生细粉和骨料颗粒级配和原设计骨料 最优配合比方差变大,且再生细粉活性差,因此复 合替代后,UHPC 基体性能劣化明显。抗折强度随 再生料复合取代率的增加呈线性下降,替代率为 5%,10%,25%时,7d 蒸养抗折强度由 26.93MPa 分 别降至 23.6,20.37,13.87MPa,下降幅度为 12.37%,24.37%,48.51%。降低主要因素是UHPC 基体中再生骨料强度比石英砂强度偏低,再生细粉 替代较多,其与水泥浆液黏结性能较差引起。

2.2 和易性(坍落扩展度)

对水泥替代组、石英砂替代组和复合替代组的 坍落拓展度进行测试,均为 215~230mm,和易性基 本保持稳定。未掺加再生粉的 UHPC 基体流动度 为 240mm,再生细粉取代水泥 5%,10%,20%,30% 和 40%时,其流动扩展度分别降低至 230,215,220, 225,220mm。坍落扩展度降低主要是因为再生骨粉 的吸水率较高,使浆体内自由水减少,但因为部分 水泥只起到密实填充作用,所以适度替代率下,和 易性下降不多。

2.3 机理分析

再生细粉和再生骨料作为建筑废料,其粒径和 UHPC组成成分中的水泥、石英砂粒径范围一致,符 合堆积密度理论要求,能实现最优级配和高密实 度,这是再生材料可替代的理论设计基础。因此, 根据改进 MMA 方法设计配合比,使用再生细粉和 再生骨料取代水泥和石英砂,可制备致密的低碳型 UHPC,同等性能在可接受范围内,理论上可行。

3 再生材料低碳减排分析及经济分析

建材的碳排放量计算涉及运输、生产等众多环 节,而各地运输环境差异较大,故本文按 GB/T 51366—2019《建筑碳排放计算标准》计算方法,聚 焦于建材生产阶段碳排放量计算,以此对比再生材 料替代生产 UHPC 碳减排效果。建材生产单位碳 排放计算如下:

$$C_{\rm sc} = \sum_{i=1}^{n} M_i F_i \tag{2}$$

式中: C_{se} 为单位建材生产阶段碳排放(kgCO₂e); M_i 为第 i 种建材的消耗量; F_i 为第 i 种建材碳排放因子(kgCO₂e/单位建材数量),可按《建筑碳排放计算标准》附录 D 及文献[6-7]取值。

本项目对照组同强度设计 UHPC(CS-125)和采用 30% 再生骨料(COS30)、25% 再生细粉(C25S0)的每立方米配合比原材料用量及对应碳排放量如表 2 所示。按 UHPC 力学性能基本不变情况下,水泥可最多被再生细粉替代 25%,对应生产阶段碳排放可减少 14.4%;石英砂最多可被再生骨料替代 30%,对应生产阶段碳排放基本不变。

第 53 卷

Table 2 Comparison of carbon emissions										
<i>会 *#r</i>	ナ治	石英	7+ 1:	粉煤	再生	再生	减水	钢纤	٦Ŀ	Csc/
<i>参</i> 奴	小兆	砂	哐火	灰	骨料	细粉	剂	维	小	$(\rm kgCO_2e \boldsymbol{\cdot} m^{-3})$
各原材料碳排放因子 $F_i/(\text{kgCO}_2\text{e}\cdot\text{m}^{-3})$	735	2.51	25.4	25.4	2.8	2.8	28.5	2 050	0.168	_
CS-125 对比组各原材料用量 <i>M_i</i> /(kg・m ⁻³)	912	1 032.0	168	120	0	0	33.6	168	211	1 025.62
COS30 对比组各原材料用量 M _i /(kg・m ⁻³)	948	705.6	168	120	302.4	0	33.6	168	211	1 052.11
C25S0 对比组各原材料用量 $M / (k_{g} \cdot m^{-3})$	711	1.008.0	168	120	0	237	33.6	168	211	878 49

表 2 碳排放量对比

表 3 不同替代材料成本对比

Table 3 (Cost comparison	of different	alternative	materials
-----------	-----------------	--------------	-------------	-----------

140100	0050	eompun.								
参数	水泥	石英 砂	硅灰	粉煤 灰	再生 骨料	再生 细粉	减水 剂	钢纤 维	水	材料成本合计/ (元・m ⁻³)
各原材料市场单价 $P_i/(元・kg^{-3})$	0.52	0.45	0.9	0.4	0.05	0.05	5	5	0.01	_
CS-125 对比组各原材料用量 <i>M_i</i> /(kg・m ⁻³)	912	1 032.0	168	120	0	0	33.6	168	211	2 148.0
COS30 对比组各原材料用量 $M_i/(\text{kg} \cdot \text{m}^{-3})$	948	705.6	168	120	302.4	0	33.6	168	211	2 034.9
C25S0 对比组各原材料用量 M _i /(kg·m ⁻³)	711	1 008.0	168	120	0	237	33.6	168	211	2 044.5

使用再生材料的 UHPC 获得高强性能的材料 学基础是再生细粉具有以下特性[8].①再生颗粒的 成核效应可促进水化过程,并产生致密的微观结 构:②再生颗粒表面粗糙,与浆体的啮合效应显著, 能改善界面过渡区,从而增加强度。

但相较于未使用再生材料的对比组 UHPC,使 用再生材料的 UHPC 强度有不同程度的降低,主要 原因在于建筑垃圾回收加工过程中再生颗粒比表 面积更大,吸水率高,引起成型过程中产生较多内 部缺陷^[9];同时再生细粉活性较差,不及水泥活性 强,导致浆体水化不足,使 UHPC 性能下降。

本项目对照组同强度设计 UHPC(CS-125) 和采 用 30% 再生骨料(COS30)、25% 再生细粉(C25S0) 的每立方米配合比原材料用量及对应材料成本如 表 3 所示。按 UHPC 力学性能基本不变情况下,水 泥最多可被再生细粉替代 25%, 对应生产成本可减 少5.26%;石英砂最多可被再生骨料替代30%.对 应生产成本可减少4.82%,经济效益显著。且考虑 对再生材料资源化利用政府补助及碳减排指标经 济化费用,最多可降低 10% 的生产成本,对 UHPC 降本、推广应用有巨大引导作用。

4 结语

1) 通过使用改进 MAA 模型进行配合比设计, 采用粒径 2.4~3.0mm 的再生骨料替代不超过 30% 石英砂或采用粒径 0.1~0.3mm 的再生细粉替代不 超多25%水泥制备 UHPC,可保证低碳 UHPC 致密 堆积结构。

2) 再生细粉替代水泥, 在低替代率(5%以内) 时,试块抗压强度稍微下降;在适度替代率内(5%~ 25%),抗压强度下降(平均下降 18%)后保持稳定; 高替代率(25%以上)抗压强度下降明显。抗折强 度在 25% 替代率内保持稳定, 高替代率(25% 以上) 后抗折强度下降明显。和易性在适度替代率下保 持稳定,下降幅度5%。

3) 再生骨料替代石英砂, 在适度替代率内 (5%~25%),抗压强度下降(平均下降16%)后保持 稳定:高替代率(25%以上)抗压强度下降呈波浪式 起伏。抗折强度在 30% 替代率内保持稳定, 高替代 率(30%以上)后抗折强度下降明显。和易性在适 度替代率下保持稳定,下降幅度5%。

4) 再生细粉和再生骨料复合替代水泥和石英 砂,在低复合替代率(5%以内)时,试块抗压、抗折 强度下降10%;超过5%复合替代率后,抗压、抗折 强度下降明显,呈线性下降。

5)按 UHPC 力学性能基本不变情况下,再生细 粉替代水泥至多25%,对应生产阶段碳排放可减少 14.4%,生产成本可减少5.26%。再生骨料替代石 英砂至多30%,对应生产阶段碳排放基本不变,生 产成本可减少4.82%。考虑对再生材料资源化利 用政府补助^[10]及碳减排指标经济化费用^[11],使用 再生材料配制的 UHPC, 可有效降低 10% 的生产成 本,利于 UHPC 推广应用,助力生态型社会建设。 参考文献:

[1] 江西省统计局. 2022 江西统计年鉴 [M]. 北京:中国统计出版 社.2022.

Statistics Bureau of the People's Republic of China. China Statistical Yearbook, 2022 [M]. Beijing: China Statistics Press, 2023.

- WANG X P, YU R, SHUI Z H, et al. Optimized treatment of [2] recycled construction and demolition waste in developing sustainable ultra-high performance concrete [J]. Journal of cleaner production, 2019, 221; 805-816.
- [3] 肖建庄,叶涛华,隋同波,等.废弃混凝土再生微粉的基本问 题及应用[J]. 材料导报,2023,37(10):1-10.

(下转第36页)

- [8] 杜新喜,胡锐,袁焕鑫,等. 混合配筋预应力混凝土管桩抗 弯承载性能研究[J]. 土木工程学报, 2019, 52(1):44-52.
 DU X X, HU R, YUAN H X, et al. Study on flexural behavior of prestressed concrete pipe pile with hybrid reinforcement[J].
 China civil engineering journal, 2019,52(1):44-52.
- [9] 张忠苗,刘俊伟,邹健,等.加强型预应力混凝土管桩抗弯 剪性能试验研究[J].浙江大学学报(工学版),2011,45
 (6):1074-1080.

ZHANG Z M, LIU J W, ZOU J, et al. Experimental study on flexural and shearing property of reinforced prestressed concrete pipe pile [J]. Journal of Zhejiang University (engineering science), 2011, 45(6): 1074-1080.

 [10] 陈刚,周清晖,徐铨彪,等. 预应力钢绞线超高强混凝土管 桩轴压性能研究[J]. 大连理工大学学报,2018,58(6):
 624-633.

CHEN G, ZHOU Q H, XU Q B, et al. Study of axial compression performance of prestressed steel strand ultra-high strength concrete pipe piles [J]. Journal of Dalian University of Technology, 2018, 58(6): 624-633.

- [11] 陈肇元,朱金锉,吴佩刚. 高强混凝土及其应用[M]. 北京: 清华大学出版社, 1992.
 CHEN Z Y, ZHU J L, WU P G. High strength concrete and its application[M]. Beijing; Tsinghua University Press, 1992.
- [12] ACI. Building code requirements for structural concrete (ACI 318-19) [S]. American Concrete Institute, Farmington Hills, MI, 2014.
- [13] 汤关祚,王清,禹琦.先张法预应力混凝土管桩抗裂弯矩和极限弯矩计算式的探讨[J].工业建筑,2004,34(1):57-59.
 TANG G Z, WANG Q, YU Q. Discussion on calculating method of cracking resistance and ultimate bending moment of

(上接第28页)

XIAO J Z, YE T H, SUI T B, et al. Fundamental problems and applications of recycled fine powder derived fromwaste concrete [J]. Material reports,2023,37(10):1-10.

- [4] BROUWERS H J H, RADIX H J. Self-compacting concrete: Theoretical and experimental study [J]. Cement and concrete research, 2005, 35(11):2116-2136.
- [5] 朱从香,杨鼎宜,王群,等.养护制度对 UHPC 力学性能的影响研究[J]. 混凝土,2020(10):43-46.
 ZHU C X, YANG D Y, WANG Q, et al. Study on the influence of curing regimes on mechanical properties of ultra high performance concrete[J]. Concrete, 2020(10):43-46.
- [6] 肖建庄,邓琪,夏冰. 混凝土制备低碳化演进与展望[J]. 建筑
 科学与工程学报,2022,39(5):1-12.

XIAO J Z, DENG Q, XIA B. Evolution and prospects of lowcarbon concrete preparation [J]. Journal of architecture and civil engineering, 2022, 39(5):1-12.

- [7] 樊俊江,於林锋. 再生混凝土的碳排放计算与分析[J]. 粉煤 灰,2016,28(4):32-34.
 FAN J J, YU L F. Calculation and analysis of carbon emission from recycled concrete[J]. Coal ash,2016(4):32-34.
- [8] 邓立贤,钱雕,刘康宁.基于建筑垃圾综合处置的生态型超高

pretensioned spun concrete piles [J]. Industrial construction, 2004, 34(1); 57-59.

- [14] 冯鹏,叶列平,庄崖屏. 高强混凝土环形截面偏心受压构件正 截面承载力计算[J]. 建筑结构, 2000(10): 16-18.
 FENG P, YE L P, ZHUANG Y P. Normal section strength calculation of eccentrically compressed ring-section members of high-strength concrete [J]. Building structure, 2000(10): 16-18.
- [15] 朱俊涛,代天昊,李可.变预应力度混合配筋混凝土管桩受 弯性能[J].建筑结构学报,2024,45(1):159-169.
 ZHU J T, DAI T H, LI K. Flexuran behavior of concrete pipe pile with various levels of prestress [J]. Journal of building structures, 2024, 45(1):159-169.
- [16] 李惠. 高强混凝土及其组合结构[M]. 北京:科学出版 社, 2004.

LI H. high strength concrete and its composite structure [M]. Beijing: China Science Publish & Media, 2004.

- [17] 谢寒. 钢筋混凝土环形截面构件受弯承载力与截面分析
 [D].大连:大连理工大学, 2020.
 XIE H. Bending capacity of reinforced concrete members with annular sections and sectional analysis [D]. Dalian: Dalian University of Technology, 2020.
- [18] 陈刚,周清晖,徐铨彪,等. 预应力钢绞线超高强混凝土管 桩受弯性能研究[J]. 建筑结构学报, 2019, 40(7): 173-182.

CHEN G, ZHOU Q H, XU Q B, et al. Study on flexural performance of prestressed steel strand reinforced ultra-high strength concrete pipe piles [J]. Journal of building structures, 2019, 40(7): 173-182.

性能混凝土设计研究[J]. 节能, 2020, 39(10): 9-12.

DENG L X, QIAN D, LIU K N. Design of an ecological ultra-high performance concrete (UHPC) based on construction waste recycling[J]. Energy conservation, 2020, 39(10):9-12.

- [9] 王鑫鹏. 基于最紧密堆积理论的生态型超高性能混凝土设计和评价[D]. 武汉:武汉理工大学,2020.
 WANG X P. Close packing theroy based design method in developingeco-efficient ultra-high performance concrete [D].
 Wuhan:Wuhan University of Technology,2020.
- [10] 刘光富,徐亚玲.上海建筑垃圾资源化利用情况调研报告
 [J].科学发展,2021(7):87-95.
 LIUGF,XUYL. Research report on Shanghai's construction waste resource utilization [J]]. Scientific development, 2021(7): 87-95.
- [11] 余典范,蒋耀辉,张昭文. 中国碳排放权交易试点政策的创新 溢出效应——基于生产网络的视角[J]. 数量经济技术经济 研究,2023,40(3):28-49.

YU D F, JIANG Y H, ZHANG Z W. The innovation spillover effect of China's carbon emissions trading pilot policy: Evidence from production networks [J]. Journal of quantitative & technological economics, 2023, 40(3):28-49.