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［摘要］ 盾构隧道施工极易诱发邻近建筑物桩基振动。 为探明盾构施工过程中产生的振动在传播过程中诱发建筑

物振动响应规律，依托南昌轨道交通 ４ 号线盾构隧道工程，基于现场振动监测及 ＦＬＡＣ３Ｄ 数值模拟进行振动研究。
结果表明，实测数据显示，第 １ 节衬砌管片及建筑物地面处盾构机掘进方向振动速度数值最大；数值模拟揭示楼板

振动随楼层升高呈逐层放大趋势，放大系数由 １􀆰 ００ 增至 ３􀆰 ０１，体现出建筑物对振动的楼层放大效应；盾构施工产

生的低频振动其频率主要集中于 ５Ｈｚ 以下，且在同一桩基不同监测点具有同步响应特性，桩顶至桩底趋于共振。
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０　 引言

　 　 地铁穿行的区域大多为建筑物密集的繁华地

带，地下空间桩基及管线密集［１⁃３］。 盾构施工振动

诱发周边环境的二次振动及噪声，会对住宅区居民

的正常生活造成干扰，对振动尤为敏感的存放有精

密仪器的研究院、医院等单位以及年久失修的密集

住宅老旧小区，振动甚至可能会导致结构损坏乃至

破坏，带来严重危害［４⁃６］。
目前对盾构施工诱发环境振动响应研究较多

采用现场实测数据［７⁃８］ 和数值模拟［９］ 方法，在现场

实测分析方面，大量研究［１０⁃１１］ 表明，盾构施工时采

集目标处的振动会对周边环境产生影响，如陶连金

等［１０］对兰州地铁 １ 号线进行实测，认为 ｘ，ｙ，ｚ ３ 个

方向的振动都不可忽视，因此在进行环境振动评价

时需考虑 ３ 个方向；王鑫等［１１］选取典型断面的典型

建筑物，对其竖向及垂直于隧道方向、沿隧道方向 ２
个水平方向的振动进行测量，研究结果表明，对建
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筑物振动响应进行监测时，在考虑竖向振动的同时

应注意水平振动的影响。
在数值模拟方面，王菁悦等［１２］ 通过建立二维数

值模型对盾构施工诱发的振动进行动力响应分析，
在振动输入时仅仅考虑振动波的单向垂直传入。
孙曦［１３］建立二维有限元平面模型，计算地铁盾构施

工引起的土层场地地面振动，但其动力学分析仅仅

建立了二维模型，只考虑了 １ 个方向的振动输入。
建立二维数值模型虽在一定程度上有助于提升模

型的计算效率，但同时也削弱了模拟结果的真实

性。 为了全面分析 ３ 个方向振动波对振动响应的影

响，本文结合南昌轨道交通 ４ 号线土建三标区间施

工案例，对盾构施工过程中振动信号进行了现场实

测，利用 ＦＬＡＣ３Ｄ 软件建立数值模型，结合现场实测

数据对盾构施工产生的振动在传播过程中诱发邻

近建筑物振动响应规律进行研究。
１　 工程概况

　 　 南昌轨道交通 ４ 号线土建三标区间线路长度约

４􀆰 ７６５ｋｍ，包括 ４ 站、３ 区间，沿着开挖线路前进，路
线周边建筑物与地下管线密集。 本文的研究区段

为上沙沟站—起凤路站盾构隧道区间，盾构区间正

穿民房住宅，该建筑为 １９８２ 年建成的老旧建筑，公
共区域楼梯区域常见细小裂缝，上部为 ６ 层砖混结

构，采 用 桩 基 础， 桩 基 长 度 为 ９ ～ １０ｍ， 桩 径

为 ０􀆰 ３７７ｍ。
研究区段线路埋深为 ９􀆰 ９ ～ １７􀆰 ５ｍ，穿越民房住

宅时，线路埋深约为 １３ｍ。 隧道掘进线路上部为砾

砂层，下部为中风化、强风化泥质粉砂岩层，属于上

软下硬地层。 该区间为单圆隧道，开挖直径为

６􀆰 ４４ｍ，管片宽度为 １􀆰 ２ｍ，每环 １􀆰 ５ｍ，管片外径为

６􀆰 ２ｍ、内径为 ５􀆰 ５ｍ，研究区段工程概况如图 １ａ 所

示，民房住宅与隧道垂直位置关系如图 １ｂ 所示。
２　 地层盾构掘进振动源现场测试

２􀆰 １　 振动源振动测试

　 　 为了研究盾构掘进过程中振动源引起环境的

振动响应，本文选择研究区段施工时产生的振动进

行现场监测，将第 １ 组传感器（监测点 １）安装在第 １
节衬砌管片处，测得最接近开挖面位置附近的振动

响应；第 ２ 组传感器（监测点 ２）布置于研究建筑物

第 １ 层楼板上，利用振动传感器测得建筑物内部振

动信号，用于后续的数值模型有效性验证。 监测点

１，２ 现场布置如图 ２ 所示。
２􀆰 ２　 现场监测结果

　 　 监测点 １ 现场采集的第 １ 节衬砌管片处振动波

速度时程曲线如图 ３ 所示，监测点 ２ 现场采集的建

图 １　 研究区段工程概况及民居住宅与隧道垂直位置关系

Ｆｉｇ． １　 Ｅｎｇｉｎｅｅｒｉｎｇ ｏｖｅｒｖｉｅｗ ｏｆ ｔｈｅ ｓｔｕｄｙ ｓｅｃｔｉｏｎ ａｎｄ
ｔｈｅ ｒｅｌａｔｉｏｎｓｈｉｐ ｂｅｔｗｅｅｎ ｔｈｅ ｖｅｒｔｉｃａｌ ｐｏｓｉｔｉｏｎ ｏｆ

ｒｅｓｉｄｅｎｔｉａｌ ｈｏｕｓｅ ａｎｄ ｔｕｎｎｅｌ

图 ２　 现场监测点布置

Ｆｉｇ． ２　 Ｌａｙｏｕｔ ｏｆ ｏｎ⁃ｓｉｔｅ ｍｏｎｉｔｏｒｉｎｇ ｐｏｉｎｔｓ

筑物地面处振动波速度时程曲线如图 ４ 所示。 其

中，ｘ 向为盾构机掘进的方向，ｙ 向为垂直于盾构机

掘进方向，ｚ 向为重力方向。 分析图 ３ａ 可知，刀盘

掘进时，第 １ 节衬砌管片处测点 ｘ，ｙ，ｚ 向最大振动

速度幅值分别为 ５􀆰 ５，４􀆰 ５，４􀆰 １ｍｍ ／ ｓ，建筑物地面附

近测点 ｘ，ｙ， ｚ 向最大振动速度幅值分别为 １􀆰 ５０，
１􀆰 ０５，０􀆰 ９１ｍｍ ／ ｓ，结果表明，盾构施工产生的振动对

ｘ 向即盾构机掘进方向的影响较大。
３　 隧道施工数值模型及验证

３􀆰 １　 计算模型建立及监测点布置

　 　 以南昌轨道交通 ４ 号线土建三标区间盾构隧道

工程为背景，根据建筑物和隧道的相对位置关系，
针对盾构施工产生的振动诱发邻近建筑物桩基振

动响应研究开展数值模拟分析，建立如图 ５ 所示计

算模型。
依托现场工程概况，考虑到模型的边界效应，
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图 ３　 第 １ 节衬砌管片处振动波速度时程曲线

Ｆｉｇ． ３　 Ｔｉｍｅ⁃ｈｉｓｔｏｒｙ ｃｕｒｖｅｓ ｏｆ ｔｈｅ ｖｉｂｒａｔｉｏｎ ｗａｖｅ
ｖｅｌｏｃｉｔｙ ａｔ ｔｈｅ ｌｉｎｉｎｇ ｓｅｇｍｅｎｔ ｏｆ ｔｈｅ ｆｉｒｓｔ ｓｅｃｔｉｏｎ

图 ４　 建筑物地面处振动波速度时程曲线

Ｆｉｇ． ４　 Ｔｉｍｅ⁃ｈｉｓｔｏｒｙ ｃｕｒｖｅｓ ｏｆ ｔｈｅ ｖｉｂｒａｔｉｏｎ ｗａｖｅ
ｖｅｌｏｃｉｔｙ ａｔ ｔｈｅ ｂｕｉｌｄｉｎｇ ｇｒｏｕｎｄ ｓｕｒｆａｃｅ

图 ５　 数值模拟计算模型及监测点布置（单位：ｍ）
Ｆｉｇ． ５　 Ｎｕｍｅｒｉｃａｌ ｓｉｍｕｌａｔｉｏｎ ｍｏｄｅｌ ａｎｄ
ｌａｙｏｕｔ ｏｆ ｍｏｎｉｔｏｒｉｎｇ ｐｏｉｎｔｓ （ｕｎｉｔ：ｍ）

本文建立 １ 个长 ６０ｍ、高 ４０ｍ、厚 ４０ｍ 的三维数值模

型，建筑物和隧道两侧均有盈余。 隧道埋深 １３􀆰 ０ｍ，
根据建筑物主要情况调查结果，建筑物设置 ５６ 根

桩，桩长 １０􀆰 ０ｍ，桩径 ０􀆰 ３７７ｍ，隧道直径 ６􀆰 ２ｍ，管片

厚均为 ０􀆰 ３５ｍ，隧道内径 ５􀆰 ５ｍ，网格划分时对隧道

开挖部分、衬砌及桩基处均进行加密。 模型四周及

底部均为固定约束。 桩与土层的接触关系采用库

仑剪切模型模拟，桩及桩周土间设置接触面，实现

桩土间的挤压与滑移。 数值模型采用 Ｒａｙｌｅｉｇｈ 定义

的黏性比例阻尼（Ｃ ＝ αＭ＋βＫ），为了避免边界效应

对模型计算结果产生影响，将模型四周及底部设置

为安静边界条件。
依托现场地层工况，模型地层设置为 ２ 层，上层

设置为砾砂层，下层设置为泥质粉砂岩层。 衬砌管

片为 Ｃ５０ 混凝土，建筑物、桩基均为混凝土结构，其

中桩基为 Ｃ４０ 混凝土，上部建筑物为 Ｃ３０ 混凝土，
根据设计文件及勘测资料确定地层与其他参数取

值，如表 １，２ 所示。

表 １　 模型土层参数设置

Ｔａｂｌｅ １　 Ｓｏｉｌ ｌａｙｅｒ ｐａｒａｍｅｔｅｒｓ ｓｅｔｔｉｎｇ ｆｏｒ ｔｈｅ ｍｏｄｅｌ

土层
名称

密度 ／
（ｋｇ·ｍ－３）

弹性
模量 ／
ＧＰａ

泊松
比

黏聚
力 ／
ＭＰａ

抗拉
强度 ／
ＭＰａ

内摩
擦角 ／
（ °）

砾砂层 ２ ７００ １５ ０􀆰 ３５ ５ ３􀆰 ０ ４６
泥质粉砂岩层 ２ ６００ ８ ０􀆰 ３３ ３ ３􀆰 ５ ３８

表 ２　 模型结构参数设置

Ｔａｂｌｅ ２　 Ｓｔｒｕｃｔｕｒｅ ｐａｒａｍｅｔｅｒｓ ｓｅｔｔｉｎｇ ｆｏｒ ｔｈｅ ｍｏｄｅｌ
结构
名称

材料
本构
模型

体积模
量 ／ ＭＰａ

剪切模
量 ／ ＭＰａ

密度 ／
（ｋｇ·ｍ－３）

管片 Ｃ５０ 弹性模型 ２􀆰 ０８×１０４ １􀆰 ２６×１０４ ２ ４００
建筑物 Ｃ３０ 弹性模型 １􀆰 ５１×１０４ １􀆰 ３０×１０４ ２ ５００
桩基 Ｃ４０ 弹性模型 １􀆰 ６４×１０４ １􀆰 ３９×１０４ ２ ５００

　 　 在数值模拟过程中，当第 １ 节衬砌位于建筑物

底部中心的桩基下方时，将第 １ 节衬砌处现场监测

的振动波输入到已支护完成的第 １ 节衬砌上。 在图

５ 中，监测点 ＪＺ１ 布置在建筑物第 １ 层地面上，用于

模型有效性验证。 监测点 １ ～ ３ 用于研究同一根桩

基不同位置处振动响应情况；监测点 ＪＺ１，ＪＺ２，ＪＺ３，
ＪＺ４ 用于研究建筑物的不同楼层振动响应情况，以
便更好地研究建筑物内部的振动响应规律。
３􀆰 ２　 模型有效性验证

３􀆰 ２􀆰 １　 现场监测振动波输入

　 　 在数值模型中将监测点 １ 现场采集的 ｘ，ｙ，ｚ ３
个方向的现场监测振动信号同时施加在第 １ 节衬砌

上开展数值模拟分析，得到第 １ 节衬砌上方建筑第

１ 层地面振动的模拟振动信号，将监测点 ２ 现场采

集的振动信号进行对比，从而进行模型有效性验

证，参考实际工况，现场采集的振动信号取 １２ｓ 输入

到数值模型中，数值模型中输入的现场监测振动波

速度时程曲线如图 ６ 所示。

图 ６　 模型中输入的现场监测振动波速度时程曲线

Ｆｉｇ． ６　 Ｔｈｅ ｆｉｅｌｄ ｍｏｎｉｔｏｒｉｎｇ ｖｉｂｒａｔｉｏｎ ｗａｖｅ
ｖｅｌｏｃｉｔｙ ｔｉｍｅ⁃ｈｉｓｔｏｒｙ ｃｕｒｖｅｓ ｉｎｐｕｔ ｉｎ ｔｈｅ ｍｏｄｅｌ

３􀆰 ２􀆰 ２　 模拟有效性验证

模型输入了从现场采集的 ｘ，ｙ，ｚ ３ 个方向的振
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动监测信号，现场监测结果显示，盾构施工过程中

产生的振动对 ｘ 向的影响最大，同时考虑到文章篇

幅限制，在数值模型有效性验证过程中仅列出 ｘ 向

验证结果。 数值模型有效性验证结果如图 ７ 所示。
模型有效性验证结果表明，数值模拟振动时程曲线

与现场监测的地表振动时程曲线基本一致，现场监

测振动时程曲线最大幅值为 ０􀆰 ３９ｍｍ ／ ｓ，理论模型输

出地表振动速度时程曲线的最大值为 ０􀆰 ３７ｍｍ ／ ｓ，振
动速度数值处于同一量级，验证结果表明模拟计算

的结果基本可靠。

图 ７　 模型有效性验证

Ｆｉｇ． ７　 Ｖａｌｉｄａｔｉｏｎ ｏｆ ｔｈｅ ｍｏｄｅｌ

４　 模拟计算结果分析

４􀆰 １　 建筑物内部振动响应情况分析

　 　 对建筑物第 １ 层楼板上的振动信号进行现场监

测发现，盾构隧道施工时对盾构机掘进方向（ｘ 向）
的影响较大，限于文章篇幅限制，以 ｘ 向的振动响应

信号为例进行后续分析。 监测点 ＪＺ１，ＪＺ２，ＪＺ３，ＪＺ４，
ＪＺ５ 用于分析建筑物内部不同楼层地面振动响应的

差异。 建筑物内部楼层板 ５ 个监测点的速度时程曲

线如图 ８ 所示。

图 ８　 建筑物内部监测点速度时程曲线

Ｆｉｇ． ８　 Ｔｉｍｅ⁃ｈｉｓｔｏｒｙ ｃｕｒｖｅｓ ｏｆ ｔｈｅ ｖｅｌｏｃｉｔｙ ａｔ
ｍｏｎｉｔｏｒｉｎｇ ｐｏｉｎｔｓ ｉｎｓｉｄｅ ｔｈｅ ｂｕｉｌｄｉｎｇ

由图 ８ 可知，在盾构施工所引发的振动作用下，
不同楼层的楼板在振动响应的幅值和变化规律上

表现出明显的差异性。 １ ～ ５ 层楼板的振动速度波

动范围分别为－０􀆰 ９２ ～ １􀆰 ９６，－１􀆰 ０３ ～ ２􀆰 ２６，－１􀆰 ２６ ～
２􀆰 ９２，－１􀆰 ８８ ～ ４􀆰 ８０，－ ２􀆰 ８５ ～ ５􀆰 ９０ｍｍ ／ ｓ。 可明显观

察到，随着楼层高度的逐步升高，楼板的振动波动

范围不断扩大，振动速度的响应幅值也呈现出逐层

递增趋势。 这一现象表明，振动在建筑结构内部存

在一定的放大效应，高层结构比低层结构更易受到

振动影响。
这种放大效应主要与建筑结构的动力特性有

关。 通常情况下，高层结构由于其柔性更大、质量

分布不同，易在受到激励时产生较显著的振动响

应。 此外，建筑物地基对结构振动的约束作用也在

不同楼层表现出不同影响。 低层楼板由于接近地

面，受到地基的刚性约束较强，振动传播受到一定

抑制；而高层楼板远离地基，约束减弱，导致其响应

更加剧烈。 因此，在盾构施工引起的地面振动传递

至建筑物内部时，沿高度方向出现由下至上的响应

放大效应。
为了对上述楼层板的放大效应进行分析，本文

引入放大系数对楼层板的放大效应进行定量分析，
将放大系数定义为：

α ＝
Ｖｍａｘ

Ｖ０
（１）

式中：Ｖ０ 为 １ 层地面振动速度峰值；Ｖｍａｘ 为其余楼层

板振动速度峰值。
根据式（１），提取建筑物监测点上 １ ～ ４ 层楼层

板上的速度峰值，并计算出对应的速度放大系数，
不同楼层板的放大系数如图 ９ 所示。

图 ９　 放大系数

Ｆｉｇ． ９　 Ａｍｐｌｉｆｉｃａｔｉｏｎ ｃｏｅｆｆｉｃｉｅｎｔ

由图 ９ 可知，第 １～４ 层楼层板的振动放大系数

分别为 １􀆰 ００，１􀆰 １５，１􀆰 ４９，２􀆰 ２９，表明盾构施工引发

的振动在建筑结构中存在明显的逐层放大效应，且
随楼层高度的增加而愈加显著。 这种放大趋势可

能与楼层刚度差异引起的结构动力特性有关，使得

高层结构对振动激励的响应更为敏感。 此外，由于

建筑结构具有良好的整体性，地面及低层结构所受

到的振动可向上传递并产生一定程度的累积，进而
导致上部楼层的振动幅值进一步增加。 因此，在工

程实践中应重点关注上部结构的振动响应特性及

其潜在影响。
为了对楼层间的振动响应影响进行评估，避免

商业与住宅建筑内人员受建筑内外振动干扰，并控

制振 动 源 影 响， 住 房 和 城 乡 建 设 部 制 定 了
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ＧＢ ／ Ｔ ５０３５５—２０１８《住宅建筑室内振动限值及其测

量方法标准》。 根据该标准中“昼间二级区域竖向

振动加速度级” 限值要求， 其加速度限值取为

０􀆰 ００８ｍ ／ ｓ２，振动水平计算公式如下：
ＶＡＬ ＝ ２０ｌｇａ ／ ａ０ （２）

式中：ａ 为振动加速度有效值（ｍ ／ ｓ２）；ａ０ 为基准加

速度值（ｍ ／ ｓ２），取 １×１０－６ｍ ／ ｓ２。
根据图 ８，将振动速度对时间求一阶导数可得

振动加速度。 结合式（２）可求得加速度级，不同楼

层基础振动水平如表 ３ 所示。

表 ３　 不同楼层基础振动水平

Ｔａｂｌｅ ３　 Ｖｉｂｒａｔｉｏｎ ｌｅｖｅｌｓ ｏｆ ｆｏｕｎｄａｔｉｏｎ ｉｎ ｄｉｆｆｅｒｅｎｔ ｆｌｏｏｒｓ

楼层板编号 加速度幅值 ／ （ｍ·ｓ－２） 振动水平 ＶＡＬ ／ ｄＢ
１ ０􀆰 ０１２ ２ ８１􀆰 ７２７
２ ０􀆰 ０１４ ０ ８２􀆰 ９２３
３ ０􀆰 ０１８ ２ ８５􀆰 ２０１
４ ０􀆰 ０２９ ９ ８９􀆰 ５１３
５ ０􀆰 ０３６ ７ ９１􀆰 ２９３

　 　 根据《住宅建筑室内振动限值及其测量方法标

准》中的规定，住宅建筑室内振动的限值标准分为

一级和二级区域，昼间的限值分别为一级区域

７３ｄＢ、二级区域 ７８ｄＢ，夜间为一级区域 ７０ｄＢ、二级

区域 ７５ｄＢ。 通过计算不同基础的振动加速度级，得
出建筑物内部楼层板的振动水平分别为 ８１􀆰 ７２７，
８２􀆰 ９２３，８５􀆰 ２０１，８９􀆰 ５１３，９１􀆰 ２９３ｄＢ。 经现场调查得

知，盾构施工时上方现场人员均能感受到较明显的

振感，距离较近的居民也有反映。 由此可知，如在

建筑正下方进行盾构施工，产生的最大振动加速度

均有可能超过住宅建筑室内振动水平限值（７８ｄＢ），
对建筑内人员产生一定干扰。 因此，由于盾构施工

振动对周边建筑物及桩基存在影响，施工单位应在

施工前进行充分的风险评估和动态监测，对施工参

数进行优化，必要时采取减振措施，如使用减振垫、
控制推进速度、调整开挖方式等。 同时，应加强施

工现场管理，确保施工人员和周边居民的安全与健

康，防止施工振动对结构和人员造成不利影响。
４􀆰 ２　 同一根桩基不同位置处振动响应分析

将监测点布置在建筑物同一根桩基不同位置

处以反映盾构隧道施工时同一根桩基不同位置处

的振动响应情况。 不同桩隧距下桩基不同监测点

的速度时程曲线如图 １０ａ 所示，对应的傅里叶谱如

图 １０ｂ 所示；不同监测点位置处振动速度最大值及

最大值出现的时间点如表 ４ 所示。
　 　 由图 １０ａ 可知，对于建筑物的同一根桩基的不

同监测点，监测点的位置距振源越远时，桩基振动

　 　 　 　 　 　

图 １０　 同一根桩基不同监测点振动响应

Ｆｉｇ． １０　 Ｖｉｂｒａｔｉｏｎ ｒｅｓｐｏｎｓｅ ａｔ ｄｉｆｆｅｒｅｎｔ ｍｏｎｉｔｏｒｉｎｇ
ｐｏｉｎｔｓ ｏｎ ｔｈｅ ｓａｍｅ ｐｉｌｅ ｆｏｕｎｄａｔｉｏｎ

表 ４　 不同监测点速度最大值及出现的时间点

Ｔａｂｌｅ ４　 Ｔｈｅ ｍａｘｉｍｕｍ ｖａｌｕｅｓ ｏｆ ｖｅｌｏｃｉｔｉｅｓ ａｔ ｄｉｆｆｅｒｅｎｔ
ｍｏｎｉｔｏｒｉｎｇ ｐｏｉｎｔｓ ａｎｄ ｔｉｍｅ ｐｏｉｎｔｓ ｏｆ ｏｃｃｕｒｒｅｎｃｅ

监测点
编号

与隧道中心
埋深距离 ／ ｍ

振动速度最

大值 ／ （ｍｍ·ｓ－１）
振动速度最大

值出现的时间点 ／ ｓ
１ 桩顶 ０􀆰 ３６９ １１􀆰 ６１４
２ 桩中 ０􀆰 ４６３ １１􀆰 ６１１
３ 桩底 ０􀆰 ６８２ １１􀆰 ６０６

响应幅值越小，这表明在振动从源点向外传播的过

程中，其能量逐渐衰减或被分散，导致距振源较远

处的桩基所受到的振动影响相对较弱。
由图 １０ｂ 可知，盾构隧道施工引起建筑物桩基

的振动响应频率基本在 ０ ～ ３０Ｈｚ，属于典型的低频

振动。 其中，振动速度响应的主要能量集中在 ５Ｈｚ
以内，速度幅值的波峰大多分布在＜５Ｈｚ 的频率区

间，这表明盾构施工引发的桩基振动具有明显的低

频主导性，易引起桩基整体的低频共振或周期性扰

动。 因此，在盾构施工过程中，必须充分考虑其引

发的低频振动对周边建筑物桩基的影响，特别是在

老旧建筑、结构复杂或地基承载力较弱的区域。 施

工单位应加强对施工过程的动态监测，采取必要的

减振措施或优化施工参数，以有效降低低频振动对

邻近建筑结构的不利影响，保障施工安全与周边环

境稳定性。
　 　 分析表 ４ 可知，监测点位置距振源越远，振动速

度最大值出现的时间点越迟。 尽管各监测点与振

源距离存在差异，但在同一根桩基上的各监测点所

记录的振动速度最大值的出现时间点均高度集中

在 １１􀆰 ６１ｓ 左右，仅存在极小偏差，这表明建筑物同
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一根桩基在盾构施工的振动作用下整体表现出类

似共振的动态响应特征。
５　 结语

　 　 １）刀盘掘进时，第 １ 节衬砌管片处测点 ｘ，ｙ，ｚ
向最大振动速度幅值分别为 ５􀆰 ５，４􀆰 ５，４􀆰 １ｍｍ ／ ｓ，建
筑物地面附近测点 ｘ，ｙ，ｚ 向最大振动速度幅值分别

为 １􀆰 ５０，１􀆰 ０５，０􀆰 ９１ｍｍ ／ ｓ，结果表明，盾构施工产生

的振动对 ｘ 向即盾构机掘进方向的影响较大。
２）数值模拟结果显示，盾构施工诱发振动在建

筑结构中具有明显的逐层放大效应，随楼层高度的

增加，楼层板振动速度峰值呈现逐层增大趋势，振
动放大系数从第 １ 层的 １􀆰 ００ 增长至第 ５ 层的 ３􀆰 ０１，
显示出结构对盾构施工振动具有显著的楼层放大

响应特性。
３）建筑物的同一根桩基的不同监测点其位置

距振源越远时，桩基振动响应幅值越小。 盾构施工

引发的振动信号频率集中于 ５Ｈｚ 以下，属于典型的

低频振动。 同一根桩基不同位置的振动速度最大

值出现时间点集中在 １１􀆰 ６１ｓ 左右，说明盾构掘进过

程中对建筑物桩基的动态激励具有同步性和一致

性，桩顶、桩中、桩底响应趋于共振状态。 因此，在
盾构施工过程中，应严格执行施工安全规范，合理

安排施工工序和减振措施，确保施工人员安全并尽

量减小对周边建筑物结构和居民生活的不利影响。
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