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沙漠地区地下水上升机理及防水设计方法∗
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［摘要］ 针对沙漠地区人类活动引发的地下水集聚对地下工程的侵蚀问题，分析了沙漠地区地下水集聚机理。 沙

漠地区地质构造中隔水层的空间分布特征是地下水赋存的必要条件，结合地表水入渗类型及渗透量的综合分析，
构建了沙漠地区地下水上升速度的计算方法，并根据地下水的上升速度确定地下结构的防水使用环境类别。 结合

沙漠地区地基砂土的化学分析，根据建筑设计使用年限，提出了以动态防水与防腐协同作用的防护体系设计方法，
为提升沙漠地区地下工程的耐久性提供了理论支撑，可有效解决沙漠地区地下水上升引发的地下结构问题。
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０　 引言

　 　 在“一带一路”倡议推进下，沙漠地区基础设施

建设规模持续扩大。 长期以来，人们对沙漠地区地

下工程防水体系设计存在认知误区，认为沙漠地区

年均降水量＜１００ｍｍ 的干旱环境无需防水措施。 然

而近年来工程实践表明，人类活动正深刻改变沙漠

地区的水文环境：农业灌溉、景观绿化用水及市政

管网渗漏形成复合补给源，形成区域性浅层地下

水。 由于地下水上升，沙漠土壤中存在的 Ｃｌ－，ＳＯ２－
４

溶解于地下水中，导致地下结构腐蚀速率较干旱环

境提升 ５～８ 倍，对未进行防水及防腐蚀保护的地下

结构及埋藏在沙漠中的建筑遗产产生了侵蚀，直接

经济损失巨大［１］，凸显研究沙漠地区地下水侵蚀防

控的紧迫性。 本文通过研究沙漠地区地下水集聚

机理，以及由于人类活动产生的生产生活用水下渗

引起浅层地下水上升速度的计算方法，确定沙漠地

区地下结构在设计使用周期内的防水防腐协同设

计方法。
１　 沙漠地区地下水集聚机理

　 　 地下水作为全球水文循环的重要组成部分，其
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赋存过程受区域地质构造、气候特征及水文循环系

统的协同作用。 常规水文系统中，地下水的补给来

源通常包含大气降水入渗补给、地表水体渗漏补给

及地质构造储水补给三大途径。 在极端干旱的沙

漠地区，地下水产生机理呈现显著的特殊性。 沙漠

地区年均降水量普遍 ＜ １００ｍｍ，降水入渗深度通

常≤２􀆰 ０ｍ，且在强烈蒸发作用下快速消散，难以对

地下水形成有效补给。 沙漠地区特有的水汽冷凝

作用产生的凝结水补给量少且易蒸发。 天然地表

水体稀缺且多为季节性，深层构造储水储量有限且

埋深＞２００ｍ，难以参与近地表水循环。 因此，人类活

动产生的持续性下渗补给（包括农业灌溉回渗、市
政绿化灌溉下渗、市政管网渗漏等）成为沙漠地下

水主要补给来源。 沙漠地区地下水的赋存还需特

殊地质条件，如在浅层无滞水地质构造，则下渗水

将继续下渗到数百米的地下，无法集聚形成地下

水。 只有浅层存在连续分布的隔水层（如黏土、泥
岩和玄武岩等低渗透性岩层），人工补给水源才将

在隔水层以上形成区域性滞水层，并逐步集聚形成

地下水。
人类活动引起的沙漠地区地下水集聚需满足 ２

个关键性水文地质条件，其本质在于有效的地下水

赋存地质构造和持续的下渗水量动态集聚。
１）地质构造需具备完整的隔水⁃储水结构体系，

隔水层应具有低渗透特性，以黏土层、致密泥岩层

或玄武岩层等低渗透性地层为佳。 这类隔水层在

竖向可有效阻滞下渗水流，避免进一步下渗。 同

时，隔水层还需具备区域性连续分布特征，其平面

分布完全覆盖地下水补给区。 理想的构造形态应

呈“盆地式”或“槽状”结构，侧向边界需被断层或岩

性界面封闭，形成天然的储水构造。
２）满足地下水系统的水量集聚要求，即区域地

下水的年总补给量（包括降水入渗、地表水渗漏等）
大于年总排泄量（包括蒸发量、蒸腾量及深层渗透

等），以保持地下水的动态平衡和稳定增长。
２　 沙漠地区地下水集聚的地质条件

　 　 沙漠地区地下水赋存的核心控制要素在于隔

水层的存在。 在长期的风力侵蚀与堆积作用下，沙
漠地区形成了独特的岩层结构和隔水层分布特征，
沙漠地区具备优异隔水性能的岩层主要包括以下

类型。
１）细粒沉积岩类。 泥岩与页岩作为典型的古

湖泊相或河漫滩相沉积产物，其黏土矿物含量 ＞
５０％，孔隙度普遍＜５％，微观结构呈定向排列，渗透

系数达到 １０－９ｃｍ ／ ｓ 量级［２］，致密的结构使其具备天

然的阻水性能，构成天然水力屏障。
２）致密碎屑岩类。 胶结良好的砂岩通过硅质

或钙质胶结作用形成连续基质，有效充填原生粒间

孔隙。 当此类岩层的胶结物含量＞２５％时，渗透率

可下降 ２～３ 个数量级［３］，具备显著隔水效应。
３）碳酸盐岩类。 未风化灰岩因方解石重结晶

作用形成致密结构，初始孔隙度通常＜２％，但在构

造裂隙发育区需注意其透水性的各向异性特征。
４）火成岩与变质岩类。 玄武岩和石英岩作为

高抗压强度岩体，其原生节理闭合度高，次生风化

壳发育程度低，形成致密的刚性隔水体，在区域构

造稳定区可形成稳定的隔水结构。
工程实践表明，黏土层在特定水文地质条件下

可形成高效水力屏障。 通过原位渗透试验发现，黏
土层遇水后会发生显著晶格膨胀效应，其自由膨胀

率可达 １２０％～２８０％，孔隙结构发生重塑，微观结构

重组形成致密叠片构造。 该物理化学作用使材料

渗透系数由 １０－５ｃｍ ／ ｓ 量级骤降至 １０－９ｃｍ ／ ｓ 量级以

下，实现动态自密封效应［４］，形成具有自修复功能

的隔水屏障，长期抗渗稳定性良好。
判定沙漠地区隔水层性能需综合多维度指标，

其核心评价指标体系主要包含以下要素。
１）渗透性能指标。 隔水层的渗透性能指标是

评价其阻隔效能的重要参数，有效隔水层的渗透系

数应＜１×１０－７ｃｍ ／ ｓ。 同时，隔水层需在长期渗流压

力作用下保持渗透稳定性，包括抵抗地下水溶蚀、
化学腐蚀、微生物等作用。

２）结构特征指标。 隔水层的结构特性指标主

要是指结构完整性和连续性。 结构完整性系数为

用于量化岩石内部结构完整性的参数，反映其裂

隙、孔隙、胶结程度等对整体力学性能和稳定性的

影响程度。 有效隔水层的结构完整性系数 Ｋｖ＞０􀆰 ７，
采用声波测试法确定，确保无贯穿性导水通道。 同

时，连续性评价要求隔水层在平面上连续分布面积

覆盖目标区域 １􀆰 ５ 倍以上。
３）有效厚度指标。 有效隔水层厚度 ｔ 需满足最

小厚度要求，根据渗流场数值分析、垂直渗透方向

的厚度要求，黏土层需满足 ｔ≥５ｍ，岩层需满足 ｔ≥
３ｍ。 对于存在夹层的复合隔水层，可计算等效厚

度，等效厚度可按下式计算：

Ｈｅｑ ＝ ∑ｋｒｅｆ·
ｈｉ

ｋｉ
（１）

式中： Ｈｅｑ 为等效厚度； ｋｒｅｆ 为参照标准隔水层渗透

系数，可取 １×１０－７ｃｍ ／ ｓ； ｈｉ 为第 ｉ 层隔水层厚度； ｋｉ

为第 ｉ 层隔水层的渗透系数。
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４）耐久性指标。 隔水层的抗风化能力对其稳

定性至关重要，风化作用对隔水层关键参数渗透系

数具有重要影响，风化导致原生裂隙扩大或新生次

生裂隙，形成渗流通道，使渗透性增大，中等风化以

下的可认为隔水性能良好。
在实际地质勘察中，需结合地层产状、断裂发

育程度、地层厚度及风化程度进行隔水性能综合评

价，满足上述指标的岩层或黏土层可认为是天然的

隔水屏障。 人类活动产生的垂向入渗水流在隔水

层界面发生侧向径流，隔水层隔绝了水流的进一步

下渗，形成典型的上部滞水型含水结构，引起沙漠

地区浅层地下水的集聚和上升。
３　 沙漠地区地下水上升趋势分析

３􀆰 １　 地下水补给分析

　 　 沙漠地区地下水补给是多源复合过程，其补给

量受气候、地质及人类活动共同影响。 沙漠地区地

下水的补给主要源于两大途径，即自然降水补给、
人类生产生活用水补给。 在沙漠地区，受限于干旱

气候，自然降水所产生的补给量极为有限，年均降

水量＜１００ｍｍ，绝大部分均快速蒸发到大气中，其对

地下水补给的贡献可忽略不计。 在昼夜温差＞２０℃
的沙漠腹地，年凝结水量可达 １５ ～ ３０ｍｍ，但受包气

带毛细阻滞效应限制，此类补给主要发生在表层砂

土 ５０ｃｍ 范围。 在人类生产生活用水中，绿化灌溉

是地下水的主要补给来源。 沙漠地区砂土的高渗

透系数（ｋ＝ １０－４ ～１０－３ｃｍ ／ ｓ）可使部分灌溉用水快速

下渗转化为地下水补给。 此外，诸如市政管线破损

导致的地下水渗漏等偶然因素，也可能成为地下水

补给来源，但此类情况具有偶发性，并非主要补给

方式。
绿化灌溉用水除了被植物吸收和大气蒸发外，

其余部分渗入地下，下渗比例受气候条件、灌溉方

式、土壤特性及植被类型影响。 沙漠地区砂土渗透

性强、保水能力差，灌溉用水通过深层渗漏流失的

比例相对于其他区域要高。 一般情况下，沙漠地区的

灌溉用水损耗情况为：植物蒸腾占比 ２０％～ ３０％，大
气蒸发占比 ３０％～５０％，深层渗透占比 ２０％～３０％［５］。

为减少绿化灌溉用水的下渗，可采取以下措施

控制下渗量：优化灌溉技术，采用滴灌或微灌技术

实现精准灌溉，精准灌溉直接向植物根部供水，配
合土壤湿度传感器，根据植物需水量动态调整，实
现按需精准灌溉，避免过量灌溉，从而减少深层渗

透；改良土壤结构，在砂土中添加黏土、混合保水剂

或有机质，提高土壤保水能力，减少下渗；铺设防渗

膜，即在植物根系下方铺设防渗膜，阻断水分下渗

通道。
３􀆰 ２　 浅层地下水位变化分析

　 　 浅层地下水位的变化主要取决于上部补水量、
隔水层渗透性能、砂土孔隙率和地下水集聚时间

等，综合考虑上述因素得出浅层地下水上升速度的

计算公式：

∑Ｗｓｉ ＝ ∑Ｗｉｉ ＋ ∑θｓａｔＡｉｖｉ ｔｉ （２）

式中： Ｗｓｉ 为上部补水量； Ｗｉｉ 为地下水通过隔水层

的下渗量，对于性能良好的隔水层，可考虑通过隔

水层的下渗量为 ０； θｓａｔ 为土壤的饱和体积含水率，
饱和体积含水率是土壤孔隙完全被水充满时的含

水率，即单位体积土壤中水的体积占比； Ａｉ 为计算

区域土壤的面积； ｖｉ 为地下水的上升速度； ｔｉ 为地下

水的集聚时间。
饱和体积含水率表征土壤所有孔隙均被水占

据的状态，因此饱和体积含水率等于孔隙率，即

θｓａｔ ＝ ｎ。 根据孔隙率计算饱和体积含水率，饱和体

积含水率计算公式如下：

θｓａｔ ＝ ｎ ＝
Ｖｖ

Ｖｔ

× １００％ ＝
Ｖｖ

Ｖｖ ＋ Ｖｓ

× １００％ （３）

式中： ｎ 为孔隙率，孔隙率是土壤中孔隙体积占土壤

总体积的比例，反映土壤的疏松程度或密实程度；
Ｖｖ 为孔隙体积，包括气体和液体占据的空间； Ｖｔ 为

土壤总体积； Ｖｓ 为固体颗粒体积。
沙漠地区隔水层以上土壤主要为砂土，且在工

程施工过程中经过机械压实，沙漠地区压实砂土的

孔隙率一般为 ３０％～４０％，具体取决于初始孔隙率、
压实程度、颗粒级配和施工工艺。 在工程中可采用

环刀法或压力板仪测定压实砂土的孔隙比，根据孔

隙比计算孔隙率；也可测量土壤密度和干密度，计
算得到砂土的孔隙比，进而推算得出孔隙率。
４　 防腐蚀分析

　 　 沙漠地区砂土中的可溶性氯盐和硫酸盐物质

对地下工程构成显著威胁。 随着沙漠地区地下水

位上升，土壤含水率增加促使腐蚀性离子溶解活

化，形成具有侵蚀性的氯盐⁃硫酸盐复合型地下水环

境。 其中，Ｃｌ－对钢筋的腐蚀作用尤为突出：Ｃｌ－的电

化学腐蚀破坏钢材表面的钝化膜，产生催化效应，
使腐蚀速率提升 ３ ～ ５ 倍，当 Ｃｌ－浓度超过临界阈值

（通常为 ０􀆰 ２％～ ０􀆰 ４％）时，金属铁的腐蚀进入自催

化阶段［６］。 ＳＯ４
２－的腐蚀活性随含水率的增长而增

强，ＳＯ４
２－与混凝土中的 Ｃａ（ＯＨ） ２ 发生硫酸盐侵蚀

反应，生成石膏和钙矾石晶体，导致混凝土结构产

生膨胀性裂缝。 沙漠地区随着地下水位上升，地下
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水和腐蚀性离子的协同效应要求地下结构在防水

的同时必须同步考虑结构防腐。
沙漠地区地下结构的防腐需采取“材料优化 ＋

结构防护 ＋外部防护＋ 环境控制”多维度措施，结合

具体环境等级和设计年限，确保长期耐久性。 地下

结构的防腐措施主要如下。
４􀆰 １　 材料优化

　 　 １）混凝土：采用高性能混凝土，即强度等级 Ｃ３５
以上混凝土，掺加硅灰、粉煤灰等矿物掺合料，降低

水泥用量以减少收缩开裂风险；添加钢筋阻锈剂，
在混凝土中加入氨基醇类非膨胀型阻锈剂，形成保

护膜，抑制钢筋锈蚀；控制 Ｃｌ－ 含量，混凝土拌合物

中 Ｃｌ－含量控制在 ０􀆰 ０６％以下，在强腐蚀环境下控

制在 ０􀆰 ０３％以下，避免钢筋锈蚀。
２）钢筋：采用环氧涂层保护钢筋，适用于中、强

腐蚀环境，环氧涂层厚度一般＞２５０μｍ；采用不锈钢

钢筋，在极强腐蚀环境下优先采用不锈钢钢筋。
４􀆰 ２　 结构防护

　 　 １）增加混凝土保护层厚度：根据腐蚀等级增加

混凝土保护层厚度，强腐蚀环境中混凝土保护层厚

度＞５０ｍｍ。
２）控制结构裂缝：在受力较大部位，如节点部

位增加钢筋网，避免应力集中引起的裂缝，同时提

高构件配筋率，采用小直径钢筋，减少结构裂缝；优
化混凝土配合比，降低水化热，减少温度应力裂缝

和收缩裂缝，避免腐蚀介质渗透。
４􀆰 ３　 外防护措施

　 　 １）涂层保护：采用环氧树脂、氟碳涂料，形成地

下结构的外部防腐隔离层。
２）硅烷浸渍：提高混凝土表面憎水性，阻止 Ｃｌ－

渗透。
３）设置隔离层：在结构外围设置高密度聚乙烯

膜（ＨＤＰＥ 膜），涂刷沥青、聚合物水泥砂浆等形成

防腐蚀隔离层。
４􀆰 ４　 环境控制

　 　 １）回填材料选择：采用中性黏土或级配砂石回

填，避免酸性土或盐渍土直接接触结构。
２）电化学保护：采用牺牲阳极法或外加电流

法，通过向被保护结构施加阴极电流从而抑制钢筋

锈蚀。
３）排水系统：采用级配碎石回填盲沟与穿孔排

水管组成立体导排网络，通过控制水力梯度定向疏

导地下水，并设置反滤层防止细颗粒流失，实现地

下结构周边水位持续低于基底，保持地下结构干燥。
４）环境监测：在地下结构的关键受力部位预埋

Ｃｌ－传感器和腐蚀电位计，实现对地下结构腐蚀状态

的长期自动化监测，为地下结构耐久性评估提供数

据支撑。
通过协同设计，使不同防腐措施优势互补、协

同作用。 在施工过程中提高施工质量，在基面处

理、关键工艺参数控制和质量验收等方面加强管

理。 在建筑使用阶段加强维护管理，每 ５ ～ １０ 年进

行全面检测，采用环氧树脂压力注浆进行裂缝修补

或更换失效阳极。 通过协同设计、施工质量控制及

全生命周期维护，提升沙漠地区地下结构在腐蚀环

境中的耐久性。
５　 地下结构的防水防腐设计方法

　 　 沙漠地区地下结构是否需要防水，取决于地下

水上升风险与腐蚀环境等级的耦合作用。 在建筑

设计使用年限内，沙漠地区地下工程防水设计需遵

循 ２ 个核心控制参数，即基础底面至隔水层顶面的

垂直距离 Ｄ、设计使用年限内地下水位上升高度 Ｈ。

当 Ｈ＜Ｄ 时，即 Ｈ ＝ ∑ｖｉ ｔｉ ＜ Ｄ 时，采用结构自防水

设计，可不采取主动防水措施；当 Ｈ≥Ｄ 时，即 Ｈ ＝

∑ｖｉ ｔｉ ≥ Ｄ 时，在结构自防水的基础上，需采取主动

防水措施，并根据地下水到达基础底面的时间 ｔ 对
地下工程防水使用环境进行分类，如表 １ 所示，根据

工程防水使用环境类别采取差异化防水与防腐的

协同设计方案。 根据工程防水等级和防水使用环

境类别确定工程防水做法，根据防腐等级确定防腐

做法，具体措施可参照 ＧＢ ５５０３０—２０２２《建筑与市

政工程防水通用规范》与 ＧＢ ／ Ｔ ５００４６—２０１８《工业

建筑防腐蚀设计标准》进行专项设计。

表 １　 地下工程防水使用环境类别

Ｔａｂｌｅ １　 Ｃｌａｓｓｉｆｉｃａｔｉｏｎ ｏｆ ｅｎｖｉｒｏｎｍｅｎｔａｌ ｃａｔｅｇｏｒｉｅｓ ｆｏｒ
ｕｎｄｅｒｇｒｏｕｎｄ ｅｎｇｉｎｅｅｒｉｎｇ ｗａｔｅｒｐｒｏｏｆｉｎｇ

防水使用环境类别 地下水到达基础底面时间 Ｔ ／ 年
Ⅰ Ｔ≤２０
Ⅱ ２０＜Ｔ≤４０
Ⅲ Ｔ＞４０

　 　 沙漠地区地下水上升引发的问题不仅是地下

结构的防水和防腐问题，地下水位上升还会产生地

下结构抗浮和底板抗水压力等结构问题，需全面考

虑地下水位上升引起的设计调整和成本增加，选择

最优的防水防腐设计策略，保障结构安全和耐久

性，并有效降低成本。
６　 工程应用

　 　 埃及新首都 ＣＢＤ 项目位于开罗以东，规划建设

２０ 栋超高层建筑，如图 １ 所示。 采用的地下结构方

案如下：８ 栋办公建筑和 ５ 栋住宅楼均为 ２ 层地下
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室，地下室采用桩筏基础，办公建筑筏板底标高为

３１３􀆰 ０００ｍ，住宅楼筏板底标高为 ３１２􀆰 ０００ｍ；超高层

标志塔有 ３ 层地下室，采用筏板基础，筏板底标高为

２９９􀆰 ０００ｍ，筏板厚度 ５ｍ，直接嵌入玄武岩持力层，
筏板底面与玄武岩表面设置 ０􀆰 ２５ｍ 厚 Ｃ２５ 抗渗混

凝土垫层；中区酒店 ２ 层地下室，采用桩筏基础，筏
板底标高为 ３０５􀆰 ０００ｍ。

图 １　 ＣＢＤ 设计效果

Ｆｉｇ． １　 ＣＢＤ ｄｅｓｉｇｎ ｅｆｆｅｃｔ

在开罗地区，因尼罗河泛滥形成大量黏土层，
黏土层因其颗粒细腻而具有良好的隔水性能。 地

质勘察表明，ＣＢＤ 项目场区存在双层复合隔水系

统，如图 ２ 所示：上层为细黏土层 （厚度为 ６􀆰 ５ ～
１２􀆰 ５ｍ），天然含水量 ２８％～ ３２％，渗透系数 ｋ ＝ ０􀆰 ９×
１０－７ｃｍ ／ ｓ；下层为中风化玄武岩（厚度 ２８ ～ ４３ｍ），渗
透系数 ｋ＝ ３􀆰 ５×１０－８ｃｍ ／ ｓ。 细黏土层之上为地表砂

土层，黏土层和玄武岩层间为含粗砂和细砂的多种

砂层，玄武岩层之下为粗砂层和砂岩夹层等。 这种

“黏土＋玄武岩”的复合隔水构造具有良好的隔水性

能，有效阻隔了绿化灌溉水的进一步下渗。

图 ２　 ＣＢＤ 地质三维示意

Ｆｉｇ． ２　 ３Ｄ ｇｅｏｌｏｇｉｃａｌ ｓｃｈｅｍａｔｉｃ ｄｉａｇｒａｍ ｏｆ ＣＢＤ

ＣＢＤ 项目的土壤化学分析数据显示，ＣＢＤ 项目

区表层土壤中 Ｃｌ－ 和 ＳＯ４
２－ 的质量浓度分别达到

２ ２３０ｍｇ ／ ｋｇ 和 ７１０ｍｇ ／ ｋｇ。 根据 ＥＮ ２０６⁃１（２０１３）标
准，当 ＳＯ４

２－ 含量 ＞ ６００ｍｇ ／ ｋｇ 时，该环境被划分为

ＸＡ２（中等硫酸盐侵蚀等级）。 参照 ＧＢ ５００２１—
２００１《岩土工程勘察规范》（２００９ 年版）的腐蚀性评

价标准，ＣＢＤ 项目地下水的腐蚀性等级判定为中等

腐蚀环境。
在 ＣＢＤ 项目中，开罗地区年降雨量＜５０ｍｍ，其

对地下水补给的影响微乎其微，暂不予考虑。 ＣＢＤ

区域内绿化灌溉用水量大，是该区域地下水的主要

补给来源。 ＣＢＤ 区域周边环绕着灌溉水量庞大的

绿廊，整体上与 ＣＢＤ 区域保持水量平衡，且本研究

重点聚焦 ＣＢＤ 区域内部，暂不考虑绿廊灌溉水对

ＣＢＤ 区域地下水的潜在影响，仅针对 ＣＢＤ 区域内的

绿化灌溉用水展开分析。 ＣＢＤ 市政设计给定的灌

溉水量为 ７５０ｍ３ ／ ｄ，年灌溉用水量 ２７３ ７５０ｍ３。 ＣＢＤ
区域的灌溉系统由全封闭式灌溉系统与开放式灌

溉系统两部分构成，其中封闭式灌溉占比 ４３％，开
放式灌溉占比 ５７％，不考虑封闭式灌溉系统的下

渗，并扣除由植物吸收或蒸发的灌溉水量，砂土的

下渗比例取为 ２５％，则 ＣＢＤ 区域渗入地下的年补水

量为 ２７３ ７５０×０􀆰 ５７×０􀆰 ２５＝ ９５ １８３ｍ３。
现场测得砂土密度约为 １􀆰 ７０ｇ ／ ｃｍ３，颗粒密度

为 ２􀆰 ６５ｇ ／ ｃｍ３，计算得到砂土的孔隙率为 ３６％，砂土

的饱和体积含水率取 ３６％。 基于公式计算的地下

水上升高度，在 Ｔ＝ ０􀆰 ３１ 年时地下水达到 ２９９􀆰 ０００ｍ
高程，即标志塔主楼筏板底出现地下水；在 Ｔ ＝ ６􀆰 ５０
年时地下水达到 ３０５􀆰 ２００ｍ 高程，即中区酒店筏板

底出现地下水； 在 Ｔ ＝ １８􀆰 ５１ 年时地下水达到

３１２􀆰 ０００ｍ 高程，５ 栋住宅楼筏板底出现地下水；在
Ｔ＝ ２０􀆰 １６ 年时地下水达到 ３１３􀆰 ０００ｍ 高程，８ 栋办公

建筑筏板底出现地下水，办公建筑中的 ２ 栋由于隔

水层位置较高，筏板底直接接触黏土隔水层，所以

在投入使用后即会在筏板底出现地下水。 由于隔

水层的起伏，越接近地表，砂土层的面积越大，地下

水位上升速度呈现先快后慢趋势，ＣＢＤ 区域内地下

水上升速度在初期为 １􀆰 ０ｍ ／年，在接近表面时上升

速度为 ０􀆰 ６１ｍ ／年。 ＣＢＤ 区域室外的设计高程为

３２２􀆰 ０００ｍ，按上述水位上升速度估算，在 Ｔ ＝ ３４􀆰 ９１
年时 ＣＢＤ 区域地下水位上升可达地表。

考虑到设计使用年限内 ＣＢＤ 区域的地下水位，
３５ 万 ｍ２ 的地下结构部分均需设置防水层，且 ＣＢＤ
区域的地下室底板的设计高程为 ３１２􀆰 ０００ｍ，与室外

地面高差达 １０ｍ，由于地下水上升，需考虑裙房地下

结构的抗浮设计和底板的抗水压力分析。 裙房需

增加抗拔桩，底板需增加厚度并配置双层双向受力

筋以抵抗水浮力，采取上述措施导致的成本较高。
为了有效降低造价，采取降低地下水位的设计思

路，采取设置疏水层的设计措施，疏水层设计如图 ３
所示。 在基础之上 ３００ ～ ６００ｍｍ 处设置疏水层，疏
水层采用级配碎石，并用土工布与回填土隔离，避
免砂土进入并堵塞疏水层。 疏水层内设置排水管，
将地下水引流到集水井，并通过潜污泵排到室外统一

处理和利用。 利用疏水层的构造措施将地下水的上
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升高度控制在底板以下，防水措施无须在地下结构全

高设置，基础和地下室的防水措施只做到地下室底板

标高位置，底板可不作防水处理。 另外，疏水层降低

地下水位，不仅可取消地下结构的抗浮措施，底板也

可做成 １００ｍｍ 厚单层双向构造配筋板。

图 ３　 疏水层设计

Ｆｉｇ． ３　 Ｄｅｓｉｇｎ ｏｆ ｈｙｄｒｏｐｈｏｂｉｃ ｌａｙｅｒ

ＣＢＤ 项目的工程防水等级为一级，同时根据表

１ 判断 ＣＢＤ 项目的防水使用环境类别为Ⅰ类，工程

防水做法为 Ｆ１，采用回填土 １ 道、结构自防水 １ 道、
防水涂料 １ 道、防水卷材 ２ 道，在地下结构外侧采用

红土回填。 为提高结构自防水性能，在地下结构的

混凝土配合比中添加硅灰，提高混凝土自防水性能

和耐久性，同时将地下结构的保护层厚度提高至

５０ｍｍ，裂缝控制宽度＜０􀆰 １５ｍｍ。 １ 道涂料防水采用

水泥基渗透结晶型防水涂料。 ２ 道卷材防水做法分

别是 ＳＢＳ 改性沥青防水卷材和塑料防水板，两者形

成“刚柔并济”防水体系，是针对沙漠地区大温差、
地下水高腐蚀性及绿化根系威胁的特点设计。 ＳＢＳ
改性沥青防水卷材采用热熔法施工，其核心作用是

提供优异的延展性、自愈性和黏结密封性能，能有

效适应结构变形和封堵基层毛细孔及细微裂缝。
但 ＳＢＳ 改性沥青防水卷材在沙漠强紫外线、高温

差、高腐蚀性地下水及潜在的施工损伤环境下，耐
久性面临挑战。 塑料防水板提供刚性防护层，采用

空铺法或机械固定法铺设，接缝采用热熔焊接，其
核心作用是提供物理屏障、耐候性、耐化学腐蚀性、
耐根穿刺性和抗施工损伤能力。 塑料防水板可承

受回填过程中砂土和碎石的挤压及施工中可能的

冲击；环境适应性强，耐高温，适应沙漠地区的昼夜

大温差；化学稳定性强，耐化学腐蚀，对氯盐、硫酸

盐有优异的抗腐蚀能力，可隔绝地下水中的腐蚀离

子；塑料防水板作为防水外层，可有效阻隔绿化区

域植物的根系穿刺。 上述复合防水系统是针对沙

漠极端环境和重要建筑严苛要求而设计的强化方

案，刚柔性防水优势互补，显著提升了防水系统的

整体可靠性和长期服役性能，降低单一材料失效导

致系统整体失效的风险。
对于沙漠地区地下结构的防腐要求，结合腐蚀

性评价结果（ＸＡ２ 环境等级），ＣＢＤ 区域所有地下结

构按 ＸＡ２ 或中等腐蚀性等级考虑，采用 ２ 道冷涂沥

青涂层对结构进行防腐蚀处理，沥青涂层干膜厚

度＞５００μｍ。
７　 结语

　 　 对沙漠地区由于人类活动而导致的地下水位

变化进行分析，研究了沙漠地区地下水上升机理和

防水设计方法。 首先需通过地质勘察等方法确定

沙漠地区的地质构造中是否存在隔水层，并确定隔

水层的连续性、厚度和抗渗性能是否符合要求。 其

次是综合分析地表水集聚速度，利用地下水集聚计

算模型预测建筑设计使用年限内地下水的水位变

化，确定相应的防水设计方法。 先根据地下水位上

升到地下结构的时间确定防水使用环境类别，再根

据防水工程等级确定防水等级，然后根据工程防水

等级和防水使用环境类别确定工程防水做法。 分

析土壤的化学分析报告，确定地下水上升后的腐蚀

环境类别，对地下结构进行相应的防腐蚀处理，确
保在建筑物设计使用期限内地下结构的安全性和

耐久性。 最后以埃及新首都 ＣＢＤ 项目为工程应用

案例，分析隔水层的分布和地下水补给来源，并计

算地下水的上升速度、提出相应的防水防腐设计方

法，为解决沙漠地区地下水上升引发的地下结构问

题提供了参考。
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