基于模糊算法的土压平衡盾构机掘进速率研究
作者简介:
李露,工程师,E⁃mail: proteus22@ 163. com
作者单位:
中铁十八局集团第三工程有限公司,河北涿州 072750
基金项目:
∗中铁十八局集团有限公司 2022 年度科研创新项目(C2022⁃051);中国铁建股份有限公司 2022 年度科技研究开发计划(2022⁃C1)
摘要:
在地铁隧道掘进中,全断面钻掘机广泛应用于机械化掘进,但由于地面结构、沉降及城市设施等复杂因素,城市隧道掘进面临特殊的挑战。土压平衡盾构机可有效降低沉降风险,并在确保掘进安全的同时,提高掘进效率,其中掘进速率的预测对于保障隧道施工安全至关重要。影响 EPB 盾构机掘进速率的因素包括地质岩土、机械和操作参数等。为此,本研究通过主成分分析方法,确定扭矩、推力、速度等关键因素,这些因素可解释超过 95%的掘进速率变化。在剔除离群数据并归一化处理后,利用基于 Mamdani 和 Sugeno 算法的模糊逻辑以及拟神经模糊方法,进行掘进速率的预测。研究结果表明,Sugeno 算法的均方根误差比 Mamdani 算法低 23. 51%,且性能指标高约 6%;拟神经模糊方法的均方误差分别比 Mamdani 和 Sugeno 算法低 33.14%和 12. 58%,显示出更优的预测效果。

English:
In subway tunnel construction, full⁃face tunneling machines are widely used for mechanizedexcavation. However, due to complex factors such as surface structures, settlement, and urban facilities,urban tunnel excavation faces unique challenges. Earth Pressure Balance (EPB) shield machines caneffectively reduce settlement risks, ensuring both excavation safety and improved efficiency. Amongthese, predicting the excavation rate is crucial for ensuring tunnel construction safety. The factorsinfluencing the EPB shield machine’ s excavation rate include geological, mechanical, and operationalparameters. Therefore, this study uses principal component analysis (PCA) to identify key factors, suchas torque, thrust, and speed,which explain over 95% of the variation in excavation rate. After removingoutliers and normalizing the data, excavation rate predictions are made using fuzzy logic based onMamdani and Sugeno algorithms, as well as a neuro⁃fuzzy method. The results show that the root meansquare error (RMSE) of the Sugeno algorithm is 23.51% lower than that of the Mamdani algorithm, andits performance index is approximately 6% higher. The neuro⁃fuzzy method shows a mean square error(MSE) that is 33. 14% and 12.58% lower than the Mamdani and Sugeno algorithms, respectively,demonstrating superior predictive performance.