岩土与地下工程 2025年 第卷 第11期

DOI: 10. 7672 / sgjs2025110007

基于深度学习的隧道掌子面围岩完整程度评价研究

龚奇丰¹,张伊依²,傅鹤林³,曹桂乾³,王 浩⁴

作者简介:

龚奇丰,高级工程师,E⁃mail:1448208966@ qq. com

作者单位:

1. 长沙市城市建设投资开发集团有限公司,湖南 长沙 410007; 2. 长沙正通建筑工程有限公司,湖南 长沙 410100;3. 中南大学土木工程学院,湖南 长沙 410075; 4. 五矿二十三冶建设集团有限公司,湖南 长沙 410116

基金项目:

∗湖南省教育厅重点课题(23A0014)

摘要:

目前常用的隧道掌子面围岩完整程度评价方法存在主观性强、信息获取成本高等问题,易误判隧道围岩质量,导致支护参数不匹配,产生不必要的经济损失. 为实现隧道施工期间围岩等级的快速划分,提高围岩等级判识精度,采用 YOLOv8 卷积神经网络模型和图像处理技术开展隧道掌子面围岩完整程度评价. 研究结果表明,YOLOv8 深度学习算法可有效识别和定位掌子面节理裂隙,具有识别精度高、召回率低、处理速度快等优点,模型预测结果与实际掌子面情况吻合较好. 结合 YOLOv8 卷积神经网络模型与修正 BQ 值法对沅古坪隧道围岩等级进行评价,发现围岩等级预测准确率达 90%,与实际情况较相符,表明该方法可有效评价隧道掌子面围岩完整程度,具有良好的应用效果.

English:

Current methods for evaluating tunnel surrounding rock integrity often suffer from strongsubjectivity and high information acquisition costs, leading to potential misclassification of rock qualityand mismatched support parameters, resulting in unnecessary economic losses. To achieve rapidclassification of surrounding rock grades during tunnel construction and improve evaluation accuracy, thisstudy employs the YOLOv8 convolutional neural network model and image processing techniques to assessthe integrity of tunnel faces. The results demonstrate that the YOLOv8 deep learning algorithm caneffectively identify and localize joint fractures on tunnel faces, exhibiting high recognition accuracy, lowrecall rates, and fast processing speeds. The model’ s predictions align well with actual tunnel faceconditions. By integrating the YOLOv8 convolutional neural network model with the modified BQ valuemethod, this study evaluates the surrounding rock grade of the Yuanguping Tunnel, achieving aprediction accuracy of 90%, which closely matches the real conditions. The proposed method proveseffective in assessing tunnel face surrounding rock integrity and demonstrates promising practicalapplicability.