智能建造 2025年 第卷 第17期

DOI: 10.7672 / sgjs2025170001

基于 NSGA-Ⅱ算法的木结构建筑施工组织多目标优化研究

于月¹,于德湖¹,杨淑娟²,张鑫¹

作者简介:

于月,硕士研究生,E-mail: 991767409@ qq. com

作者单位:

1.山东建筑大学土木工程学院,山东济南 250101; 2.青岛理工大学土木工程学院,山东青岛 266520

基金项目:

∗山东省重点研发计划:绿色智能建造和建筑工业化关键技术、成套装备及应用(2021CXGC011204);济南市“新高校 20 条”自主培育创新团队项目:高性能无机胶复合木结构智能建造关键技术及工程应用(202228057)

摘要:

木结构建筑因其节能环保、预制化程度高等优势,在现代建筑中的应用增多,经过系统优化的木结构施工顺序对确保施工进度、降低施工成本和提高资源利用率至关重要。为解决木结构建筑施工组织优化问题,提出基于 NSGA-Ⅱ算法框架的木结构建筑施工多目标优化方法。在满足建筑施工逻辑和资源约束的前提下,以施工工期和工人调度成本为目标函数,建立多目标优化数学模型,优化施工顺序,并将 NSGA-Ⅱ算法及粒子群算法优化方案与原施工方案进行对比。结果表明,相比原方案,2 种算法均表现出显著的优化效果,且 NSGA-Ⅱ算法优化方案较粒子群算法优化方案缩短 8.7%的工期、降低 5.6%的工人调度成本。经实例验证,本方法具有一定可靠性、有效性,可为木结构施工组织优化提供决策支持。

English:

Timberwork buildings are increasingly applied in the modern construction field, due to theadvantages in energy efficiency, environmental protection, and high prefabrication levels, the systematicoptimization of the construction sequence for timberwork structures is crucial for ensuring constructionprogress, reducing costs, and improving resource utilization. To solve the problem of optimizing theconstruction organization, a multi-objective optimization method based on NSGA-Ⅱ algorithm isproposed. Under the constraints of construction logic and resource availability, a multi-objectivemathematical model is established with project duration and worker scheduling costs as the objectivefunctions, to optimize the construction sequence, the NSGA-Ⅱ algorithm and particle swarm optimizationsolutions are compared with the original construction plan. The results indicate that, both algorithmsdemonstrate significant optimization effects compared to the original plan,with the NSGA-Ⅱ optimizedsolution, reducing project duration by 8.7% and worker scheduling costs by 5.6% compared to theparticle swarm optimization solution. Validation through practical examples shows that, this method isreliable and effective, providing decision support for optimizing timberwork construction organization.