试验研究 2025年 第卷 第20期

DOI: 10.7672 / sgjs2025200141

基于改进 U-Net 算法的预制纤维混凝土与普通混凝土接合面图像分割研究

关宏波

作者简介:

关宏波,高级工程师,E-mail:704655705@ qq. com

作者单位:

中铁铁工城市建设有限公司,山东 济南 250002

基金项目:

∗江苏省自然科学基金(BK20231429)

摘要:

针对预制装配式混凝土构件接合面质量检测难题,提出一种改进 U-Net 图像分割算法,通过引入Transformer 架构的全局语义建模能力,结合 U-Net 模型局部特征提取优势,构建了面向纤维混凝土和普通混凝土接合面破坏面图像特征的图像分割模型。 试验结果表明,U-Net∗模型在真实接合面数据集上平均交并比(mIoU)达78.15%,较传统 U-Net 模型提高 6.45%,改进算法设计提升了 U-Net 网络对接合面图像的识别精确度,证明了改进算法在预制纤维混凝土与普通混凝土接合面识别分割上的应用价值。

English:

Aiming at the problem of joint surface quality detection of prefabricated concrete components,an improved U-Net image segmentation algorithm is proposed. By introducing the global semanticmodeling ability of Transformer architecture and combining the advantages of U-Net model local featureextraction, an image segmentation model for the failure surface image features of the joint surface of fiberconcrete and ordinary concrete is constructed. The experiment results show that the mean intersectionover union ( mIoU) of the U-Net ∗ model on the real joint surface data set is 78.15%, which is 6.45%higher than that of the traditional U-Net model. The improved algorithm design improves the identificationaccuracy of the joint surface image of the U-Net network, and proves the application value of theimproved algorithm in the identification and segmentation of the joint surface of prefabricated fiberconcrete and ordinary concrete.