综合评述 2025年 第卷 第20期

DOI: 10.7672 / sgjs2025200001

索承网格结构设计、施工与性能研究进展

熊鼎飞¹,郭奇¹,陈学朋¹,姚成冲¹,罗宗礼¹,赵绪华¹,孙侨博¹,麦慧琳²,朱彪²,吴尚斌²

作者简介:

熊鼎飞,助理工程师,E-mail:154721510@ qq. com

作者单位:

1. 中国建筑第四工程局有限公司,广东 广州 510630; 2. 广州新中轴建设有限公司,广东 广州 510623

基金项目:

∗中国建筑第四工程局有限公司科技研发课题:轮辐式索承网格结构施工创新技术研究(CSCEC4B-2025-KTA-18)

摘要:

索承网格结构作为大跨度空间建筑领域的高效结构形式,通过拉索与网格构件的协同受力实现以拉代压的力学优化,显著降低自重 30% ~ 50% 并提升材料利用率 40% 以上,已成为跨度 150~ 300m 建筑的优选方案。 系统阐述该结构近 10 年研究进展,在设计理论层面,重点解析找形找力耦合机制,阐明几何非线性效应对大跨度结构稳定性的显著影响,揭示有限元分析与预应力优化在提升结构承载力中的核心作用;在施工技术方面,对比支架法与无支架法的适用场景,强调无支架施工在成本与工期控制中的优势及其对毫米级精度控制的严苛要求,剖析三维激光扫描、全站仪等监测手段在误差管理中的应用瓶颈;在性能分析维度,系统梳理静力性能、稳定性、动力与抗震性能的研究成果,指出施工误差耦合效应与关键节点非线性行为对结构性能的影响机制。 研究表明,现有技术在 300m 以上超大跨度结构的复杂力学行为模拟、施工动态响应调控等方面仍存在挑战。 未来应聚焦多物理场耦合的精细化力学模型构建,发展智能化施工监测与自适应调控技术,推动碳纤维复合材料等新型材料的工程应用,以突破当前技术瓶颈,为索承网格结构在超大跨度建筑中的创新应用提供理论支撑与技术指引。

English:

As an efficient structural form in the field of large-span space architecture, cable-supportedgrid structure realizes the mechanical optimization of tension instead of compression through thesynergistic force of cable and grid components, which significantly reduces the self-weight by 30% ~50% and improves the material utilization rate by more than 40%. It becomes the preferred scheme forthe buildings with a span of 150 ~ 300m. The research progress of the structure in the past ten years issystematically expounded. At the level of design theory, the coupling mechanism of form-finding andforce-finding is mainly analyzed, and the significant influence of geometric nonlinear effect on the stabilityof large-span structure is clarified, and the core role of finite element analysis and prestress optimizationin improving the bearing capacity of the structure is revealed. In terms of construction technology, theapplication scenarios of support method and non-support method are compared, the advantages of non-support construction in cost and construction period control and its strict requirements for millimeter-levelprecision control are emphasized, and the application bottlenecks of monitoring technologies such as 3Dlaser scanning and total station in error management are analyzed. In the dimension of performanceanalysis, the research results of static performance, stability, dynamic and seismic performance are systematically sorted out, and the influence mechanism of construction error coupling effect and nonlinearbehavior of key joints on structural performance is pointed out. The research shows that the existingtechnology still has challenges in the simulation of complex mechanical behavior and construction dynamicresponse control of super large-span structures above 300m. In the future, the construction of refinedmechanical models with multi-physical field coupling should be focused on, intelligent constructionmonitoring and adaptive control technology should be developed, the engineering application of newmaterials such as carbon fiber composite materials should be promoted, the current technical bottleneckshould be broken through, and theoretical support and technical guidance for the innovative application ofcable-supported grid structures in super large-span buildings should be provided.